solar radiation

An update on this winter's rain and (lack of) sunshine...

Originally posted on or around January 22, 2022.

Charts 1 - 3a have been updated on June 19, 11 AM PDT.


Solar Radiation: How much sun are we getting…

A little background first: the Union Bay WSU Solar Radiation Station has been recording solar radiation data since late 2011. Here I’m comparing water-year (WY) cumulative solar radiation totals in Figure 1 thru Figure 3. Water-years begin on October 1 and run through September 30 of the following year. Water-year 2011-12 is incomplete for the Union Bay station – WSU only began publishing data sometime after October 1 that year. Therefore, I’ll compare cumulative traces for the 2012-13 through 2021-22 water-years, a total of ten water-year cycles

***

Weatherwise, it was a dim and grim start to winter, and this extraordinary low level of light has continued through most of winter and through spring 2022 as well. Figure 1 shows since October, we’ve received the least amount of sun over this 10-year period. The total solar radiation received so far this water year equates to roughly 93% of the mean for the previous nine years. Previously, the winter half of 2012-13 had the lowest cumulative amount of solar radiation in this limited dataset.

Figure 1. Cumulative solar radiation since October 1 at the Union Bay Solar Radiation Station. Last updated on June 19 with data thru June 18.

Click to enlarge.

Figure 2 is a Cleveland-style dot plot sorted by cumulative daily solar radiation to-date at the WSU Seattle Solar Radiation Station. This shows the 2021-22 water year cumulative solar radiation total is quite a bit less than the other years in this data set. This past February was abnormally dry (see Figure 4). On February 24, 2022, the solar radiation totals at the WSU station in Seattle for 2021-22 rose above totals for the same period in 2012-13. This elevation in ranking persisted for about three weeks. However, this cloudy spring has dropped 2021-22 back to the lowest total solar radiation levels for the past ten years.

Note too that the X-axis values start above 2000 MJ/sq. meter. Starting the x-axis at zero would show that the totals between years are not as disparate as it might seem in Figure 2. 

Figure 2. Dot plot of solar radiation accumulation since October 1 for the past 10 years.

 

Figure 3 shows the same data as Figure 2, except here in a traditional column chart ordered by year. The recent winter-spring seasons of 2017-18 through 2019-20 were quite a bit lighter (sunnier) than this past year. Perhaps this is the reason the darkness has been so noticeable the past 7-8 months.

Figure 3. Cumulative solar radiation beginning each water year on October 1.

 

Figure 3a is new to this post as of May 30. While Figures 1-3 show the total solar radiation measured on site in Seattle’s Union Bay station, Figure 3a shows the cumulative daily cloud cover or sky ratings beginning on October 1 of each trace and extending through May 29 of the following year. This data was gathered at SeaTac airport by the National Weather Service.

A sky cover rating is assigned a value of 0-10 for each day. A sky cover rating of zero indicates no clouds. A sky rating of 10 indicates 100% total cloudiness the entire day. Partially cloudy days are given a rating in whole number values in between this two extremes.

Each trace was plotted by adding up the daily rating values from October 1 of the previous year through the end of May. Steeper line traces indicate cloudier years.

Figure 3A shows that the current October 1 through mid-June period has been the cloudiest over the past 15 years.

Figure 3a. Cumulative daily sky ratings beginning each water year on October 1.


Precipitation: How wet have we been…

Figure 4 displays the cumulative precipitation for all water years at Seattle-Tacoma International Airport (KSEA) from the water years 1948-49 through 2021-22. This represents 74 years of data. SeaTac Airport is approximately 16 miles south of the Union Bay solar radiation site and is the official site of record for Seattle area weather. 

Figure 4 shows a rainy start to our winter season. Seattle had a total of 26.7 inches of rain in the period between October 1, 2021, and January 14, 2022. This placed this year’s early winter rainy season as third rainiest since the late 1940s, following the 1955-56 and 2006-07 early winters. Most of this rain fell after October 19, about 25.5 inches. The October 19 through January 14 period represented 86 days. Therefore, the precipitation rate for this period was 0.30 inches per day. The often sunny, pleasant days we usually see in October seemed elusive this past year and this chart shows why. 

It was relatively dry most days from January 13 through February 26, a period of 43 days. A total of 1.24 inches of precipitation fell during this period, a rate of approximately 0.029 inches per day, or 1/10 of the rate for the previous three months.

Record rains hit starting on February 27 and continued through the next day. A total of 7.9 inches of rain fell from February 27 through March 31. This represented a daily precipitation rate of 0.23 inches per day – a high rate, but not quite the rate of the first three months of the wet season. 

It has been a relatively wet spring as well including through May, especially in late May and early June. This water year’s ranking has moved from the 12th most rainy at SeaTac Airport to the 6th most in just the past few weeks.

Figure 4. Cumulative rain totals at Seattle-Tacoma International Airport for yearly periods beginning on October 1.
Click to enlarge.

This wet spring has moved the SeaTac total precipitation level to the #9 position in the rankings since the late 1940s as shown in supplemental Figure 4a. However, two recent winters have been wetter than this year, 2015-16 (#3) and 2016-17 (#1).

Precipitation traces for past water-years by decade at SeaTac can be found here.

Figure 4a. Rankings of winter precipitation for water years beginning on October 1 at Seattle-Tacoma International Airport (KSEA).

 

Winter / Spring Temperatures: How cold have we been…

It was a chilly winter in 2022, chillier than normal. March ended with a spate of warmer days which took some of the chill off the winter temperature pattern. But April and May have seen a return to the chilly weather. On average it’s been roughly 5-10 F cooler than normal most days since the end of March.

Figure 5 shows the daily average temperature departures from 30Y climate norms at SeaTac Airport. I’ve included data for December 2021 since December is the meteorological start to winter.

Figure 5. Daily average temperature departures from normal, SeaTac Airport. Click to enlarge.

 

Figure 6 takes the same data shown in the previous figure and extends it back to October 1, the start of the 2021-22 water year. It has been cooler than normal for most of the start of the rainy season this year. However, the whole of November may have been slightly milder than most Novembers. You can see the warm period quite clearly in late November when a series of atmospheric rivers blew in across the Pacific and dumper huge amounts of rainfall in Washington and southern British Columbia flooding large parts of the areas around the Fraser and Nooksack rivers.

Figure 6. Daily average temperature departures from normal at SeaTac Airport starting October 1, 2021.
Click to expand.

 

Stepping back further in time, Figure 7 shows the average daily temperature departures from climatic norms from October 1, 2000, to the present. This chart also highlights days where the average daily temperature exceeded or fell short of the daily normal for a given date by 20˚F or more. A particular warmish period when warmer-than-normal days outnumbered cooler-than-normal days began sometime around 2012-13 and continued for about five years before moderating somewhat. With the most recent coolish last few months, that trend appears to have moderated even more. It remains to be seen if this will continue.

Figure 7. Average daily temperature departures from 30Y climatic normals, SeaTac Airport, 2000-2022.
Click to expand.



Sources:

[1] Precipitation and temperature data: NOAA / NWS Climate, Observed Weather: https://www.weather.gov/wrh/climate?wfo=sew
[2] Solar radiation data: Washington State University AgWeatherNet Current Conditions Map: http://weather.wsu.edu

Data Graphics:

All dataworks created using DataGraph 5.0, Visual Data Tools, Inc. for macOS.

A dark start to winter...

Updated: December 29, 2021, 6:30 AM PDT

Figure 1 updated with most recent data.
Figure 2 has been updated. Note that the minimal value on the x-axis begins at 320 MJ/sq.meter. Figure 3 has been updated. Note that the minimal value on the y-axis begins at 300 MJ/sq.meter. Figure 4 has been added to show the daily temperature departure for 2021 to date.
Figure 5 has been added to show the daily temperature departures since 2000 at SeaTac airport.


If it seems like it has been pretty dark and rainy this autumn and early winter in Seattle you would be right. I’ve already posted about the high level of precipitation we’ve seen in Seattle and the extended Western Washington area since the start of the 2021-22 water year on October 1. The areas surrounding Bellingham and Vancouver B.C. have been especially hit hard with rain.

But it has seemed very dark in recent months as well, and by dark, I mean low levels of light. Of course all this rain comes in leaden skies. And looking at solar radiation data collected near Husky Stadium and Union Bay (47.66, 122.29) in Seattle confirms this has been the darkest start to winter in the past ten. Washington State University operates a solar collection station in this area and exposes the processed data to the public on their web site. A link to this data is listed at the bottom of this page.

Figure 1 shows the cumulative daily totals of solar radiation (MJ/sq.meter) from October 1 through December 31 for 2013 through the present year. At this writing we are only partly through December this year. But it is clear that this year has been quite dark compared to the other years. Lower traces indicate lower levels of solar energy measured. This year’s trend line is the heavy line. The Seattle area began with a normal October, but around mid-month the rate of cumulative solar energy slowed considerably.

I choose a start date of October 1 since this is the traditional start date of the Northwest water year, the time of year when storms begin to blow off the Pacific with increasing frequency. This date provides a good start or “zero point” for the start of the wet season.

Figure 1. Solar radiation measured at Seattle’s Union Bay data collection site.

 

Figure 2 was added on December 15. This figure is a dot plot showing the total cumulative solar radiation received at WSU’s Solar Station in Seattle. The dot plot is sorted by total solar daily accumulation for the stated period.

This year’s accumulation of sunlight since the start of October is marked by the black dot in the lower left corner. It is substantially lower than the sunnier years at winter’s start. It is substantially lower than the median value for all years shown. The median value is shown by the dash vertical line.

Looking at the years’ positions on the y-axis, there does not appear to be any pattern to the order for the very limited number of years for which data exists.

Figure 2. Dot plot showing cumulative solar radiation sorted by year.

 

Figure 3 essentially shows the same data as Figure 2. In this bar chart, the years are in order along the X-axis (horizontal). It’s a little easier for the mind to see the lack of any pattern by time in this small sample size – we are more often used to seeing date-format data along the horizontal axis, increasing in time from left-to-right. It’s also clear to see how low sun levels have been this Oct-Dec period compared to recent years. All years show data through the date in the title.

Figure 3. Cumulative Solar Radiation, Oct 1 through December, sorted by years, 2012-21.

 

In addition to lower solar radiation levels in Seattle since roughly mid-October, it has been a relatively cool autumn and start to winter. September had mare days that were cooler than normal than days warmer than normal. Same for October. November was pretty mild with a series of atmospheric rivers coming in from the tropics. Those brought warmish, moist air with them. And plenty of flooding in parts of the Pacific Northwest and southern British Columbia. December has been relatively colder than most recent Decembers. This can be seen in the large number of days where average daily temperatures have been below 30Y climatic normals.

Figure 4 shows the daily temperature departures for 2021 up through the most recent date.

Figure 4. Daily Average Temperature: Departure from 30Y normals. Click to enlarge.

Figure 5 shows similar data as Figure 4, daily average temperature departures from 30-year normals going back to January 1, 2000. It appears in recent years, the trend is back towards the climatic normals of the past 30 years after a warming period for several years in the mid-2020s.

The 30Y normal daily average temperature reference values for all years except 2021 are based on the years 1981-2010. In 2021, the comparison is against the normal daily temperature range from 1991-2020. It’s possible that the 1991-2020 30Y normals cycles have increased from the previous 1981-2010 30Y cycle and this year’s lower trend is simply reflecting that change - departures may be comparing against a high reference line..

This data is for the National Weather Services’s Seattle-Tacoma International Airport site.

Figure 5. Daily normal temperature departures for SeaTac airport from 2000 to present. Click to enlarge.


SOURCE DATA
Washington State University AgWeatherNet: http://weather.wsu.edu
NOAA/NWS Climate Data Seattle/Tacoma https://www.weather.gov/wrh/climate?wfo=sew
FULL DISCLOSURE
I am not a meteorologist, climate scientist, data scientist, geologist nor hydrologist. I am simply a (retired) engineer who has some familiarity with numbers, basic statistics and probability statistics who enjoys looking at readily available public data and trying to make sense of things. I enjoy building data visualizations from data I find much like others enjoy working daily crosswords or sudoku puzzles. Local weather, climate and hydrology science are complex subjects. Take what you read and find here with this in context.
 

An especially dark and dreary winter...

This has been an extraordinary dark and dreary winter in Seattle. A dotplot of the cumulative daily Sky Cover scores for SeaTac International Airport shows the period between December 1, 2019 though January 29, 2020 far exceeds the scores for similar periods back to 2006-07.


Another way to view the darkness this winter is to look at the average daily solar radiation, measured in MJ/m^2. This data is available from Washington State University.

Extracting data from their ‘Seattle’ location – which I beleive is on the campus of the University of Washington, but subject to correction – you can see that the average daily solar radiation for this winter (December 2019-January 2020) is the lowest value for the past nine years, years in which data is available for this location.


Click to enlarge…


Finally, look at the rain pattern over this same December-January period this water year (a water year calendar runs from Oct 1 thru Sep 30 due to rain patterns in the Pacific Northwest). The line chart below shows that as of January 29, SeaTac International Airport has accumulated almost the exact normal amount of precipitation to be expected based on the 30-year average for this location (established from records for the 1981-2010 period).

But this year, the first 2-½ months of the water year were relatively dry. It wasn’t until about mid-December when the rains began catching up to the 30-year average. It’s taken a lot of steady dark, water-heavy clouds to drop this amount of rain in a relatively short period. This information supports the high level of daily cloudiness and low level of solar radiation shown in the first two charts.

Click to enlarge.